Crystalline Binuclear *cis***- and** *trans***-Chlorotin(ii) Amides [Sn(μ-Cl)(NR₂)]₂, the** c is-1a \rightleftharpoons *trans*-1b Isomerisation for [NR₂ = NCMe₂(CH₂)₃CMe₂], and the X-Ray **Structures of la and of trans-[Sn(p-CI){ N(SiMe3)2}]2t**

Richard W. Chorley, Peter B. Hitchock, Brian S. Jolly, Michael F. Lappert and Gerard A. Lawless *School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN 1 9QJ, UK*

Crystalline binuclear chlorotin(ii) amides $[Sn(\mu-Cl)(NR_2)]_2$ have been X-ray characterised as cis- $[NR_2=$

 $\text{NCMe}_2(\text{CH}_2)_3\text{CMe}_2$, 1a] and *trans-(R = SiMe₃*, 2b) conformers [CI-Sn-CI' = 78.53(4) 1a or 81.33(4)° 2b, Sn-CI-Sn' 100.91 (4) la or 98.67(4)" 2b, <Sn-CI> 2.74 la or 2.67 **A** Zb]; a solution of 1 in toluene undergoes rapid cis *e trans* exchange at ambient temperature, but distinct cis-la and *trans-lb* forms coexist below 192 K (119Sn NMR spectroscopy and line-shape analysis) and evidence is presented for an intramolecular mechanism for this exchange.

We report the synthesis [eqn. (1)] \ddagger and X-ray characterisation§ of two crystalline binuclear μ -chlorotin(II) amides $[Sn(\mu\text{-}CI)NR_2]_2$ $[NR_2 = NCMe_2(CH_2)_3CMe_2$ **1** or R = SiMe₃ 21. Surprisingly, while one of these is the cis-isomer (la, Fig. 1), the other has the trans-configuration (2b, Fig. 2) (each tin atom can be regarded as having a stereochemically active lone pair of electrons). Moreover, we demonstrate that in PhMe, complex 1, unlike 2, undergoes cis-1a \rightleftharpoons trans-1b isomerisation sufficiently slowly for the process to be observable on the NMR timescale. The mechanism of this exchange may involve unprecedented inversion at a three-coordinate Sn^{II} centre, as discussed theoretically {on model compounds such as $[SnCl₂(NH₂)]^{-}$ } elsewhere.³

$$
Sn(NR2)2 + SnCl2 \rightleftharpoons [Sn(\mu-Cl)NR2]2
$$
 (1)

Upon progressively cooling a $[2H_8]$ toluene solution of 1 in the cavity of an NMR spectrometer, a singlet observed initially at δ +240 (305 K) (in an ¹¹⁹Sn $\{1H\}$ experiment) shifted rapidly and linearly with accompanying line-broadening to δ + 193 at 195 K. Strong temperature dependence of δ (119Sn) is wellknown;4 however, further cooling to 192 K (the coalescence temperature, *Tc)* led to the appearance of two distinct singlets at δ +181 and +193 in an integrated ratio of ca. 2:1; these signals were too broad to discern whether $1J(119Sn-117Sn)$ was observable; the large band width of the signals may be due to

§ Crystal data [T 22 °C, Enraf-Nonius CAD-4 diffractometer, no absorption corrections, full-matrix least-squares refinement with non-hydrogen atoms anisotropic, H atoms fixed, $w = 1/\sigma^2(F)$:

1a C_{18} H₃₆Cl₂N₂Sn₂, *M* = 588.8, monoclinic, space group $\text{C2}/c$, *a* = 17.346(1), $b = 12.850(2)$, $c = 11.582(1)$ Å, $\beta = 114.41(1)$ °, $U =$ 2350.7 \hat{A}^3 , $F(000) = 1168$; $Z = 4$, $D_c = 1.66$ g cm⁻³; $\mu(\text{Mo-K}\alpha) = 23.7$ cm⁻¹, specimen $0.2 \times 0.2 \times 0.15$ mm, 2174 unique reflections for 2 < θ < 25°, 1420 reflections with $|F^2|$ > 3 $\sigma(F^2)$ used in the refinement; $R = 0.028$, $R_w = 0.036$. The dimer lies on a crystallographic two-fold rotation axis.

2b $C_{12}H_{36}Cl_2N_2Si_4Sn_2$, $M = 314.5$, triclinic, space group *PI*, $a =$ 6.434(1), $b = 8.910(1)$, $c = 12.750(1)$ Å, $\alpha = 101.04(1)$, $\beta = 95.54(1)$, $\gamma = 109.08(1)$ °, $U = 667.9~\text{\AA}^3$, $F(000) = 312$; $Z = 1$, $D_c = 1.56~\text{g cm}^{-3}$; μ (Mo-K_{α}) = 22.6 cm⁻¹, specimen 0.4 \times 0.25 \times 0.2 mm, 2452 unique reflections for $2 < \theta < 25^{\circ}$, 2076 reflections with $|F^2| > \sigma(F^2)$ used in the refinement, $R = 0.032$, $R_w = 0.042$. The dimer has a crystallographic inversion centre.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

the neighbouring quadrupolar $35Cl$ and $14N$ nuclei. These changes were entirely reversible on warming.

The chemical shift difference of *ca.* 12 ppm at T_c is exceedingly small when compared with the ¹¹⁹Sn chemical shift dispersion normally associated with Sn^{II} complexes (ca. 4500 ppm).⁴ We conclude that each signal arises from a species having a closely similar Sn^{II} environment, most probably the cis -la and trans-1b conformers of the chlorotin(II) amide 1. This notion is supported by *(i)* the isolation of crystalline cis-la and trans-2b forms of two related dimeric μ -chlorotin(π) amides, and *(ii)* calculations which show not only that cis- and

Fig. 1 The molecular structure of cis - $[Sn(\mu-C)]$ - ${NCMe_2(CH_2)_3CMe_2}\}_2$ la and atom numbering scheme. Selected bond lengths and angles: Sn-Cl 2.704(1), Sn-C1' 2.786(2), Sn-N 2.055(3), N–C(1) 1.486(5), N–C(5), 1.481(5) Å; CI–Sn–Cl^{$\dot{7}$} 78.53(4), Sn-C1-Sn' 100.91(4), Cl-Sn-N 102.3(1), Cl'-Sn-N 106.3(1), **Sn-N-**C(1) 119.7(3), Sn-N-C(5) 119.9(3), C(1)-N-C(5) 119.7(3)°.

Fig. 2 The molecular structure of *trans*- $\{Sn(\mu-Cl)\{N(SiMe_3)_2\}\}\$ ₂ 2b and atom numbering scheme. Selected bond lengths and angles: Sn-Cl 2.598(1), Sn-C1' 2.741(1), Sn-N 2.069(3), N-Si(1) 1.729(3), N-Si(2) 1.733(3) A; C1-Sn-C1' 81.33(4), Sn-C1-Sn' 98.67(4), C1-Sn-N 101.08(8), Cl-Sn-N' 94.20(9), Sn-N-Si(1) 112.2(2), Sn-N-Si(2) 124.3(2), Si(1)-N-Si(2) 123.3(2)^o.

t No reprints available.

^{\ddagger} *Preparation of* 1: Red Sn(NR₂)₂ [NR₂ = NCMe₂(CH₂)₃CMe₂]¹ $(2.37 \text{ g}, 5.94 \text{ mmol})$ in Et₂O (75 ml) was added to SnCl₂ (1.11 g, 5.85) mmol) in Et₂O (75 ml). After 45 h at *ca.* 25 °C, volatiles were removed *in vacuo*, and the residue extracted into C_6H_{14} . From this, orange crystals of 1 (1.79 g, 52%) were obtained at -30 °C, m.p. 125-130 °C; 1H NMR ([ZHsIPhMe, 305 K): 6 1.56s, 1.27m. Colourless **22** (87%), subl. 90-100 °C 10⁻³ Torr, was made similarly; ¹H NMR $(C_6D_6,$ 305 K): *6* 0.47.

trans-model analogues have very similar $\Delta_f G^{\circ}$,⁵ but also that ΔG^{\ddagger} for their interconversion is low [via a T-shaped, rather than a C_{2v} , tin-centred transition state; *i.e.*, an edge **A** rather than a vertex \bf{B} (as in $NH₃$) inversion process].³

An alternative explanation for the two δ ⁽¹¹⁹Sn) signals at T_c for 1 as arising from a dimer \rightleftharpoons 2 monomer equilibrium is discounted, because (i) **1** is a dimer in frozen benzene, and (ii) a comparison of the vastly different $\delta(119Sn)$ parameters in PhMe for the only established dimer \rightleftharpoons 2 monomer Sn^{II} system:⁶ (SnR'₂)₂ [δ (¹¹⁹Sn) + 740 and +725 at 165 K in PhMe] and SnR'₂ [$\delta(^{119}Sn) + 2315$ at 375 K] [R' = CH(SiMe₃)₂].⁷

When the 119Sn NMR spectra of complex **1** were examined using tetrahydrofuran (THF) as solvent, there were only minor shifts *(ca.* 20 ppm) compared with the PhMe results [e.g., δ (119Sn) +172 at 193 K] but no signal splitting was observed down to 173 K. These features are indicative of an exceedingly weak $Sn^H \cdots THF$ association in the dimer, with one conformer somewhat more preferred, rather than the formation of the unknown monomeric $SnCl(NR)_n(THF)_n$ which would have been expected to have a vastly greater 6(119Sn) shift to a lower frequency compared with **1.** In support we note that whereas $Sn[N(SiMe₃)₂]$ in C_6D_6 has δ (119Sn) +771, we now find that addition of THF leads to a low frequency shift to δ +624 at 290 K.

On the basis of measurements at the coalescence temperature, $\Delta G_{192\text{ K}}^{\dagger}$ for the process **1a** \rightleftharpoons **1b** is estimated as 32.7 kJ mol⁻¹, whereas a full line shape analysis⁸ \parallel leads to ΔH^{\ddagger} 70

 \oint *Spectral parameters used:* δ (¹¹⁹Sn) +192.2 (= 35 840 Hz) and +177.0 $(= 33 010 \text{ Hz})$ at 183 K; populations (p) 0.67 and 0.33, respectively at 183 K; minimum line-width at half-peak height, 940 Hz, transverse relaxation time; $T_2 = 3.4 \times 10^{-4}$ s. Unresolved $^{1}J_{\text{Sn-N}}$ coupling was incorporated into T_2 for the purpose of the lineshape analysis.

kJ mol⁻¹, ΔS^{\ddagger} 187 J K⁻¹ mol⁻¹ and ΔG^{\ddagger} 34.2 kJ mol⁻¹. This indicates that the isomerisation is entropy driven (favouring a dissociative process), but caution is called for since (i) high values of ΔS^{\ddagger} are an occasional artefact of the spectral analysis/line-shape simulation, and (ii) the difficulty of estimating line-widths in this system. An alternative intramolecular mechanism might implicate R_2 NSn+(μ -Cl)-Sn-(Cl)- $NR₂$ as an intermediate.

We thank the SERC and Koninklijke Shell-Laboratorium, Amsterdam for a studentship to R. **W.** C., the EC (Stimulation Contract: ST 200335) and the Leverhulme Trustees for support, Dr R. L. Johnston and Dr P. W. Lednor (Shell) for useful discussions, and Drs Arduengo and Dixon for a fruitful exchange of ideas.

Received, *3rd* June *1991; Corn. 110261 7H*

References

- 1 M. F. Lappert, P. P. Power, M. J. Slade, L. Hedberg, K. Hedberg and **V.** Schomaker, J. *Chem. SOC., Chem. Commun.,* 1979, 369.
- *2* D. H. Harris and M. **F.** Lappert, J. *Chem. SOC., Chem. Commun.,* 1974, 895.
- 3 D. A. Dixon, A. J. Arduengo and M. F. Lappert, *Heteroatom Chemistry,* 1991, 2, in the press.
- 4 *cf.,* B. Wrackmeyer, *Ann. Repts. NMR Spectrosc.,* 1985, 16, 73.
- 5 G. Trinquier, J. *Am. Chem. SOC.,* 1990, 112,2130; 1991,113,144.
- 6 D. E. Goldberg, **P.** B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland and **B.** E. R. Schilling, J. *Chem.* **SOC.,** *Dalton Trans.,* 1986, 2387; M. F. Lappert, *Silicon, Germanium, and Tin Compounds,* 1986, 9, 129.
- 7 K. W. Zilm, G. A. Lawless, R. M. Merrill, J. M. Millar and G. *G.* Webb, J. *Am. Chem. SOC.,* 1987, 109, 7236.
- 8 D. A. Kleier and G. Binsch, DNMR 3; A Computer Program for the Calculation of Complex Exchange-broadened NMR Spectra. Modified Version for Spin Systems Exhibiting Magnetic Equivalence or Symmetry. Program 165, Quantum Chemistry Program Exchange, Indiana University, Bloomington, 1970.